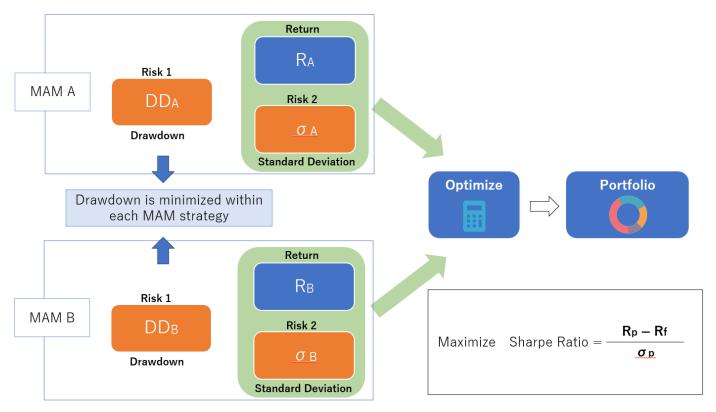
Table of contents

Optimal Portfolio Construction Process (Optimal Investment Ratio to Each EA) – Statistical System	1
Conceptual Image of Optimal Asset Allocation	2
Regarding AI-based analysis for deriving the optimal asset allocation:	3


Optimal Portfolio Construction Process (Optimal Investment Ratio to Each EA) - Statistical System

Step	Work Content	Operation	Statistics/Function
1	Calculate the return of each EA	Use the "basic statistics" of "data analysis".	Basic Statistics
	(dependent variable) and the mean,	Use the basic statistics of data analysis .	Dasic Statistics
	variance, and standard deviation of each		
	factor (independent variable).		
2	Calculate the variance-covariance matrix	Use the "covariance" of "data analysis".	Covariance Matrix
2	of the return of each EA (dependent	Use the covariance of data analysis .	
	variable) and each factor (independent		
	variable).		
3	Calculate the correlation coefficient	Use the "correlation" of "data analysis".	Correlation
5	between the return of each EA	Use the correlation of data analysis .	Correlation
	(dependent variable) and each factor		
	(independent variable).		
4	Extract principal components from each	Check the correlation coefficients outputted	Correlation &
-	factor (independent variable) and use	in step 3.	Multiple Regression
	these principal components as	 Extract principal components from each 	Analysis
	"independent variables" to conduct PCR	factor (explanatory variable) using principal	Analysis
	model (Principal Component	component analysis, and perform	
	Regression) and PLS model (Partial	regression analysis using the principal	
	Least Squares Regression) to predict the	components as explanatory variables.	
	dependent variable (next month's return	⇒ "Principal Component Regression (PCR)	
	rate of EA). The following two types of	model)"	
	regression analyses are conducted:	② A model that is created so that the	
		covariance between the target variable and	
	PCR Model: "Principal components are	the principal component is maximized, and	
	calculated through principal component	considers the target variable.	
	analysis regardless of the dependent	\Rightarrow "Partial Least Squares Regression	
	variable."	Analysis (PLS model)"	
	PLS Model: "Constructed to maximize		
	the covariance between the dependent		
	variable and the principal components,		
	it's a model that considers the dependent		
	variable."		

Luxstella LLC - Luxstella Bright Star Strategy (Al-driven Optimal Asset Allocation)

5		Multiply the coefficients outputted from the	Regression		
		regression analysis by the factor values,	Equation Results		
		add the intercept, and predict the return for			
		the next month.			
6	Calculate the optimal investment ratio	Using the "variance-covariance matrix"	Portfolio		
	for each EA (each strategy).	calculated in step 2 and the "predicted	Construction		
		return (expected return)" calculated in step			
		8, compute the optimal investment ratio.			

Conceptual Image of Optimal Asset Allocation

ltem	Policy	
Return	Probability x Random Variable Estimation of Impact (Estimation of Probability) Constructing a factor model using AI to estimate returns (Using AI to determine which factors to use)	
Risk• Using past standard deviation as the expected future standard dev(Standard Deviation)(In the next phase, the expected standard deviation will be calculated ARCH model or the GARCH model. An algorithm will be introduced here		
Covariance and orrelation coefficient	• Using past values as the expected future covariance and correlation coefficient. (In the next phase, the multivariate GARCH will be used. An algorithm will be introduced here.)	
Optimization	Quadratic Programming	

Regarding AI-based analysis for deriving the optimal asset allocation:

1. Portfolio Optimization Method: Mean-Variance Method

2. Risk-Return Estimation: For the return (expected profit rate), it is assumed that it is estimated from the multi-factor by AI (including optimal factor selection). However, AI estimation is limited to cases where optimal estimation is possible, and usually, our own market outlook is taken into account.

(1) Return (Expected Profit Rate)

Probability × Random Variable: Estimate of impact (probability estimation). Construct a factor model using AI and estimate the return (use AI to determine which factors should be used).

Estimate of impact (probability estimation): Construct a factor model using AI and estimate the return (using AI to determine which factors to use).

Construct a factor model using AI and estimate the return (using AI for factor selection as well).

(2) Risk (Standard Deviation)

Use past standard deviations as expected future standard deviations. Introduce an algorithm and estimate the expected standard deviation using the ARCH model or the GARCH model.

(3) Covariance & Correlation Coefficient

Use past values as expected future covariance and correlation coefficients (introduce an algorithm and use multivariate GARCH).

(4) Optimization

Quadratic Programming

3. Rebalancing: Monthly or ad hoc

4. Al Usage Points: Return (Expected Profit Rate) Estimation, Factor Selection